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Groundwater reactive transport modeling provides a systematic framework for integrating 
hydrologic and biogeochemical conceptual process models into a quantitative description of 
subsurface behaviors. However, subsurface environments are open and complex and subject to 
multiple interpretations and conceptualizations given available data and information. The model 
uncertainty is quantified using the Bayesian Model Averaging method (BMA), in which multiple 
plausible reactive transport models are postulated and calibrated against observations. Instead of 
making predictions based on a single model, predictions of reactive transport are made using the 
calibrated model ensemble, and BMA jointly assesses parametric uncertainty and model 
uncertainty. The BMA methodology is applied to seven surface complexation models of varying 
complexity developed for simulating U(VI) transport in columns. Model probabilities, measures of 
plausibility of the models, are calculated using the Maximum Likelihood version of BMA 
(MLBMA) based on model calibration results, and used as model averaging weights. Model 
uncertainty exceeds parametric uncertainty even in these well-controlled laboratory experiments 
and model averaging gives superior predictions relative to any single model.

A practical method for evaluating prediction uncertainty in hydrogeologic modeling with joint 
consideration of model and parameter uncertainty is Maximum Likelihood version of Bayesian 
Model Averaging (MLBMA) (Neuman, 2003; Ye et al., 2004). In MLBMA, the posterior

 

 
distribution of the quantity of interest, Δ, given a set of data D

 

is:

The posterior mean and variance of Δ

 

are
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(a) Expt. 1: pH 4.26, 1M U(VI) Expt. 1
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(b) Expt. 2: pH 3.9, 1M U(VI) Expt. 2
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(c) Expt. 8: pH 4.22, 50M U(VI), 2mM Buffer Expt. 8
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Figure 1: Comparison of observed breakthrough curves 
and fitted transport simulations for surface complexation 
model formaulations of increasing complexity.



 

Model uncertainty is represented using a set of alternative models, Mk , each model being 
consistent with the available site information. 



 

Parameter uncertainty enters through p(Δ|Mk

 

,D) as a component of the posterior distribution of 
D

 

for a given model, Mk

 

, estimated from the results of a maximum likelihood model calibration.

The posterior probability, p(Mk

 

|D), of model Mk

 

is given by Bayes’

 

rule
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which is a function of the model likelihood and the subjective prior model probability. KIC

 

is a 
model discrimination criterion computed from the results of a maximum likelihood model 
calibration as (Ye et al., 2008) 

where L

 

is the likelihood function estimated at the calibrated model parameters,      ,   Nk

 

is the 
number of calibrated parameters,          is the prior parameter

 

distribution, and F

 

is the observed 
Fisher information matrix. 
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Procedure of Uncertainty analysis
(1)

 

Calibrate experiments 1, 2, and 8 to estimate 
model parameters (i.e., surface complexation 
formation constant and fraction of the total  
surface site density strong site).

(2) Calculate model probabilities based on the   
calibration results.

(3) Simulate experiments 3, 4, 5, and 7 for   
validation.
• Assess parametric uncertainty of each model.
• Jointly assess parametric and model 
uncertainty. 

Conditions of the Column Experiments
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Table 1: Model probability (%) based on all the calibration data

C1 C2 C3 C4 C5 C6 C7 MLBMA
Predictive logscore 2825 76 194 103 172 174 104 31
Predictive coverage 27 46 37 32 39 29 37 68
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Parametric uncertainty describes the confidence in the selection

 

of a parameter to be used in a 
model.  Parameters 'K1, K2, K3' are unknown reaction rates for 3

 

reactions chosen to represent 
the reaction network in a model.  Parameter 'Sites' describes nature of the adsorption sites of the 
media  To investigate the observed sensitivity of K1 (Fig 2), a numerical Monte Carlo experiment 
was conducted.  Holding 'K2, K3, Sites' constant to calibrated values for model 'C4', K1 was varied 
for 1000 realizations using a uniform distribution from provided

 

feasible minimum and maximum 
values.  Future study will involve using the Morris Method to investigate global sensitivity.

Figure 4: Optimal parameter values for 
one experiment subject to the same 
model does not necessarily produce a 
feasible parameter value for another 
experiment.

Figure 2: Sensitivity of model 
parameters

Figure 3: Parameter distribution, 
N=1000 realizations
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(a) Model C3 Expt. 5: pH 3.89, 1M U(VI)
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(b) Model C5
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(c) Model C7

Figure 7: Comparison of observed 
breakthrough curves and predicted 
transport simulations for single model and 
model averaging; Black dots represent 
measured U(VI) concentration, blue lines 
are for mean predictions and uncertainty 
bounds of individual models, and red 
lines are for posterior mean and variance 
of model averaging. 

Table 2: Predictive logscore

 

and predictive coverage (%) of single model and MLBMA 
(based on all data) for simulating Experiment 5.

Column experiments assembly
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Models
Prediction Uncertainty

Parameter Sensitivity and Uncertainty

Model Calibration
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Experiment pH Retardation 
Factor

1 4.26 ±

 

0.02 1.0 0 96.9 8.9

2 3.90 ±

 

0.02 1.0 0 98.6 3.2

3 4.79 ±

 

0.02 1.0 100 94.8 8.7

4 4.39 ±

 

0.02 1.0 100 97.1 2.5

5 3.89 ±

 

0.02 1.0 0 96.0 2.9

6 5.6 ±

 

0.1 0 1000 N/A N/A

7 4.26 ±

 

0.02 50.0 0 99.4 6.5

8 4.22 ±

 

0.02 50.0 0 99.5 3.7
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Figure 5: Prediction interval subject to 
distribution in Figure 3.  The mean

 

does 
a poor job of predicting the peak 
concentration of uranium.  The 
prediction interval does not cover the 
observed peak.

Figure 6: Error is highly subject to the model's ability to simulate the 
concentration of uranium over time, rather than a selection of K1 as a 
parameter.
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