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Introduction

We consider the following linear parabolic stochastic PDE,

∂tu(t, x, ω)−∇ · [a(x, ω)∇u(t, x, ω)] = f (t, x, ω) in [0, T ]×D × Ω,

u(t, x, ω) = 0 on [0, T ]× ∂D × Ω

u(0, x, ω) = u0 on D × Ω,

(1)

whereD ∈ R
d, Ω is the sample space andu : Ω × [0, T ] ×D → R. The symbol∇ means differ-

entiation with respect to the spatial variablex ∈ D. Unlike previous literatures on this issue, we
consider a wider range of situations as follows:

•The coefficient and the forcing term are represented not onlyby KL expansion but also by a
nonlinear function of a random vector;

•Both bounded and unbounded random variables are considered;

•Errors are analyzed for both a semi-discrete scheme and a fully-discrete scheme for the parabolic
PDE (1).

The error of the numerical solution splits intoε = (u − uh) + (uh − uh,p). We mainly analyze the
second term, i.e. the interpolation error in the probability space and obtain the first term by classic
finite element analysis. Moreover, as long asuh is analytic with respect to the random parameters,
the interpolation error will decay exponentially by using typical approximation theories. There-
fore, in what follows the analyticity ofuh is the key point of our analysis. The procedure of the
error analysis is shown in the flowchart below:
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What we focus on

The Stochastic Collocation Method

For a fixedT > 0, the weak formulation of (1) has the following three equivalent forms:
∫

D
E[∂tuv]dx +

∫

D
E[a∇u · ∇v]dx =

∫

D
E[fv]dx ∀v ∈ H1

0(D)⊗ L2
P (Ω)

m KL− expansion

∫

Γ

∫

D
∂tuvρdy +

∫

Γ

∫

D
[a∇u · ∇v]ρdy =

∫

Γ

∫

D
fvρdy ∀v ∈ H1

0(D)⊗ L2
ρ(Γ)

m
∫

D
∂tu(y)vdx +

∫

D
a(y)∇u(y) · ∇vdx =

∫

D
f (y)vdx ∀v ∈ H1

0(D)⊗ L2
ρ(Γ), ρ−a.e. inΓ

(2)

Then, an approximation is constructed with the stochastic collocation method by

•For a fixedT , construct an approximationuh(T, ·, y) : Γ → Hh(D) by projecting (2) onto the
subspaceHh(D), i.e. for eachy ∈ Γ

∫

D

∂tuh(y)vhdx +

∫

D

a(y)∇uh(y) · ∇vhdx =

∫

D

f (y)vhdx ∀vh ∈ Hh(D). (3)

•Collocating (3) on the zeros of orthogonal polynomials and building the discrete solution
uh,p ∈ Hh(D)⊗ Pp(Γ) by interpolating iny the collocated solutions, i.e.

uh,p(T, x, y) = Ipuh(T, x, y) =
m1
∑

j1=1

· · ·
md
∑

jd=1

uh(T, x, yj1, · · · , yjd)(lj1 ⊗ · · · ⊗ ljd). (4)

where, for instance, the function{ljk}dk=1 can be taken as Lagrange polynomials.

Error Analysis of the Semi-discrete Scheme

Lemma 1 For anyT > 0, if the solutionu(T, x, yn, y∗n) is a function ofyn, u : Γn → C0
σ∗
n
(Γ∗

n;L
2(D)),

then the k-th derivative ofu(T, x, y) with respect toyn satisfies

‖∂kynu(T, y)‖L2(D) ≤ Ck!(2γkn) (5)

whereγn > 0, C depends on‖f (y)‖L2(0,T ;D), ‖u0(y)‖L2(D), amin and the Poincaŕe coefficientCp.

Theorem 1 Under Lemma 1, the solutionu(t, x, yn, y∗n) as a function ofyn admits an analytic exten-
sionu(z, y∗n), z ∈ C, in the region of the complex plane

Σ(Γn, τn) := {z ∈ C,dist(z,Γn) ≤ τn} (6)

with 0 < τn < 1/(2γn).

Theorem 2 For a fixedT > 0, by Theorem 1, there exist positive constantsrn, n = 1, 2, · · · , d, and
C which is independent ofh andp, such that

‖uh(T )− uh,p(T )‖L2(D)⊗L2
ρ(Γ)

≤ C
d

∑

n=1

βn(pn) exp(−rnp
θn
n ), (7)

where ifΓn is bounded,θn = βn = 1 and rn = log
[

2τn
|Γn|

(

1 +
√

1 + |Γn|2
4τ 2n

)]

, if Γn is unbounded,

θn = 1
2, βn = O(

√
pn) andrn = τnδn. τn is smaller than the distance betweenΓn and the nearest

singularity in the complex plane, as defined in Theorem 1.

Error Analysis of the Fully-discrete Scheme

The fully-discrete Crank-Nicolson scheme of the problem (1) is

(
Um − Um−1

∆t
, v) + (a

∇Um +∇Um−1

2
,∇v) = (f (tm−1

2

), v), ∀v ∈ Sh,m ≥ 1 (8)

whereSh is the finite element space andU 0 = u0,h.

Lemma 2 If the solutionUN(x, yn, y
∗
n) is a function ofyn, UN : Γn → C0

σ∗
n
(Γ∗

n;L
2(D)), and we define

one kind of discrete norm as

M (N, l) =





∆t

2

N
∑

j=1

‖√a∂lyn(∇U j +∇U j−1)‖2L2(D)





1

2

, (9)

then the k-th derivative ofUN(x, y) with respect toyn satisfies

‖∂kynU
N (y)‖L2(D) ≤ Ck!(2γkn) (10)

whereγn > 0, C depends on‖f (y)‖L2(0,T ;D), ‖u0(y)‖L2(D) amin and the Poincare coefficientCp.

Theorem 3 Under Lemma 2, the fully discrete solutionUN(x, yn, y
∗
n) as a function ofyn admits an

analytic extensionUN(z, y∗n), z ∈ C, in the region of the complex plane

Σ(Γn, τn) := {z ∈ C,dist(z,Γn) ≤ τn} (11)

with 0 < τn < 1/(2γn).

Theorem 4 For a positive integerN , consider a uniform partition of[0, T ] with ∆t = T/N , by The-
orem 3, there exist positive constantsrn, n = 1, 2, · · · , d, and C which is independent ofh andp,
such that

‖UN − UN
p ‖L2(D)⊗L2

ρ(Γ)
≤ C

d
∑

n=1

βn(pn) exp(−rnp
θn
n ), (12)

whereθn, βn andrn are defined as in Theorem 3.

A Numerical Example

We consider an one-dimensional parabolic PDE:

∂tu−∇ · (a∇u) = f on [0, T ]×D × Ω,

u(t, a, ω) = 0 on [0, T ]× Ω,

−a∂nu(t, b, ω) = 1 on [0, T ]× Ω,

u(0, x, ω) = 0 onD × Ω.

(13)

where
a(x, ω) = amin + exp [Y1(ω) cos(πx) + Y2(ω) sin(πx)]

f (t, x, ω) = 100 + exp (Y3(ω) cos(πx) + Y4(ω) sin(πx))
(14)

The computational results for theL2(D) approximation error in the expected valueE[u(T )] are
shown in the following figure.
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