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Abstract ‘

Mathematical modeling and computer simulations are noysudadely used
tools for the prediction of the behavior of scientific and i@egring systems. Our
Interest is In how uncertainty propagates through the tcdaveloped nonlocal,
derivative free, continuum peridynamics model for matanachanics. In con-
trast to classical partial differential equation modeksjighynamics is an integro-
differential equation that does not involve spatial danes of the displacement
field. We focus on the peridynamics model whose forcing teamasdescribed by
a finite-dimensional random vector, which is often calledéntimensional noise
assumption. Numerical methods based on this stochastadypamics model are
Implemented. Preliminary results for the one-dimensiqgmmablem will be pro-
vided and compared.

The Stochastic Peridynamics Model ‘

« The general bond-based model
The equation of motion at any poirfat timet Is given by:

pU(X,t) = fo(u(x’, t) —u(x,t), X — X)dVi + b(X, t) (1)

wherep — the mass density function,
u — the displacement vector field,
H, — the neighborhood of with radiuso,
b — the prescribed body force density field,
f — the pairwise function represents the interaction betweengbes.

¢ A linearized peridynamics model for proportional microelastic materials
IS given by the integro-differential equation
) (X' —X) ® (X' — X)
U(X,7) = C
P ( ) /x X! _ X|3
wherec denotes a constant that depends not only on the materialdmuon the

d=horizon

(u(x',t) —u(x,t))dVe + b(x,t)  (2)

space dimension. In one dimensions L% wherek denotes the bulk modulus.

W’
¢ The stochastic peridynamics model for proportional microgastic materials
In time-independent case Is posed as: find a random funetiol) x ) — R,

such thatP-almost everywhere (a.e.) i or in other words, almost surely (a.s.)

the following equation holds:

LU(X,w) = / X C(X — )|(>/(>LX>X(’)|(3_ X)

Finite-Dimensional Noise Representatiod

In most applications, the source of randomness for therigrearmb(x, w) ap-
pearing in (3) can be described by a random ve¥tet Y7, ..., Y] : Q — rY,
that Is

(U(X,w) —uX,w))dVy = b(X,w) (3)

bM(X, w) — b(X, Yl(w), ,YM(w)) on D x ().

where{Y,}) . are real valued random variables with zero mean value artd uni

variance. Denote by, = Y, (2) the image, bounded or unbounded,}gfand

assume that the components of the random vextos |Y;,Y5, ..., Yy, have a
joint probability density function (PDF) : I'y; — R™ with p € L>(I"y;), where

'y = I1ML, T, contain the support of this probability density, then ttuebastic

boundary problem (3) has a deterministic equivalent asviollseek a random
flelduy : D x 'y — R, such that a.s.,

LUuy(X,y) =by(Xy), VXe D,yeTly. (4)

Then the corresponding variational formulation is: fing : I'y; — W(D) such
that

(£uM(y),v)L2<D> — (bM(y),v)LQ(D), wWeW(D), p—ae.inly (5

Numerical Methods I

e Monte Carlo Finite Element Method (MCFEM):

—Step 1. Choose a number of realizatioR, € ~., and a finite element space
on D, W"(D). For eachj = 1,..., K, sample iid realizations of the load
by(w;, -) and find an approximatiow’:,(w;; -) € W"(D) such that

(Lu%(wjv ')7 V)L2(D) — (bM(wjv °)> V)L2(D) WAAS Wh(D) (6)

—Step 2: Approximatee|u,,|(-) by the sample average:
1 K

E(Uy; K) = gg Uy (wj; +). (7)

e Stochastic collocation method (SC).

— Full tensor product polynomial approximation
— Sparse tensor product polynomial approximation (SmolyakMethod)
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Figure 2: For a finite dimensional,; with M = 2 and maximum levelb = 4 we plot the full tensor product grid
(17 x 17 = 289 points) using the Clenshaw-Curtis abscissas (left) antdasm Smolyak sparse grids (65 points)
€ (4,2), utilizing the Clenshaw-Curtis abscissas (right).

Preliminary Results I

Some preliminary results are listed below for the one-disramal stochastic peri-
dynamics problem (8), I.e.

1 rerou(z,w) —ulz,w) .
ﬁ/ (2, w) ( >dx = b(z,w),

r—0 r — 2]

2

r e (0,1)
r € |—6,00U[1, 149

(8)

_/\

u(x, w) — g<x7w>a

\

1, g(z,w) = x(1 — ), Cy(z) = 1/100,8 = 3h, h = 1/8.
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Figure 3: Lo relative error of mean vs. the number of points for real@afor M = 4 (left) and L, relative error of
variance vs. the number of points for realization #dr= 4 (right).

Future Works I

e Implementation for deterministic/stochastic problem& mimensions.

e Complete, rigorous analyses of errors and convergence aaug of adaptive
grid refinement strategies for deterministic problems.



