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Abstract

Mathematical modeling and computer simulations are nowadays widely used
tools for the prediction of the behavior of scientific and engineering systems. Our
interest is in how uncertainty propagates through the recently developed nonlocal,
derivative free, continuum peridynamics model for material mechanics. In con-
trast to classical partial differential equation models, peridynamics is an integro-
differential equation that does not involve spatial derivatives of the displacement
field. We focus on the peridynamics model whose forcing termsare described by
a finite-dimensional random vector, which is often called finite-dimensional noise
assumption. Numerical methods based on this stochastic peridynamics model are
implemented. Preliminary results for the one-dimensionalproblem will be pro-
vided and compared.

The Stochastic Peridynamics Model

•The general bond-based model
The equation of motion at any pointx at timet is given by:

ρü(x, t) =
∫

Hx
f(u(x′, t) − u(x, t), x′ − x)dVx′ + b(x, t) (1)

whereρ− the mass density function,
u− the displacement vector field,

Hx − the neighborhood ofx with radiusδ,
b− the prescribed body force density field,
f − the pairwise function represents the interaction between particles.

•A linearized peridynamics model for proportional microelastic materials
is given by the integro-differential equation

ρü(x, t) =
∫

Hx
c
(x′ − x) ⊗ (x′ − x)

|x′ − x|3
(u(x′, t) − u(x, t))dVx′ + b(x, t) (2)

wherec denotes a constant that depends not only on the material, butalso on the
space dimension. In one dimension,c = 18k

5δ2 , wherek denotes the bulk modulus.

•The stochastic peridynamics model for proportional microelastic materials
in time-independent case is posed as: find a random function,u : D × Ω → R,
such thatP -almost everywhere (a.e.) inΩ, or in other words, almost surely (a.s.)
the following equation holds:

Lu(x, ω) ≡
∫

Hx
c
(x − x′) ⊗ (x − x′)

|x − x′|3
(u(x, ω) − u(x′, ω))dVx′ = b(x, ω) (3)

Finite-Dimensional Noise Representation

In most applications, the source of randomness for the forcing termb(x, ω) ap-
pearing in (3) can be described by a random vectorY = [Y1, ..., YM ] : Ω → R

M ,
that is

bM(x, ω) = b(x, Y1(ω), ..., YM(ω)) on D × Ω.

where{Yn}
M
n=1 are real valued random variables with zero mean value and unit

variance. Denote byΓn ≡ Yn(Ω) the image, bounded or unbounded, ofYn and
assume that the components of the random vectorY = [Y1, Y2, ..., YM ] have a
joint probability density function (PDF)ρ : ΓM → R+ with ρ ∈ L∞(ΓM), where
ΓM =

∏M
n=1 Γn, contain the support of this probability density, then the stochastic

boundary problem (3) has a deterministic equivalent as follow: seek a random
field uM : D × ΓM → R, such that a.s.,

LuM(x, y) = bM(x, y), ∀x ∈ D, y ∈ ΓM . (4)

Then the corresponding variational formulation is: finduM : ΓM → W(D) such
that

(

LuM(y), v
)

L 2(D)
=

(

bM(y), v
)

L 2(D)
, ∀v ∈ W(D), ρ − a.e. in ΓM (5)

Numerical Methods

•Monte Carlo Finite Element Method (MCFEM):

– Step 1: Choose a number of realization,K ∈ N+, and a finite element space
on D, Wh(D). For eachj = 1, ...,K, sample iid realizations of the load
bM(ωj, ·) and find an approximationuh

M(ωj; ·) ∈ Wh(D) such that
(

Luh
M(ωj, ·), v

)

L2(D)
=

(

bM(ωj, ·), v
)

L2(D)
∀v ∈ Wh(D) (6)

– Step 2: ApproximateE[uM ](·) by the sample average:

E(uh
M ; K) ≡

1

K

K
∑

j=1

uh
M(ωj; ·). (7)

•Stochastic collocation method (SC):

– Full tensor product polynomial approximation
– Sparse tensor product polynomial approximation (SmolyakMethod)

Figure 2: For a finite dimensionalΓM with M = 2 and maximum levelω = 4 we plot the full tensor product grid
(17× 17 = 289 points) using the Clenshaw-Curtis abscissas (left) and isotropic Smolyak sparse grids (65 points)
H (4, 2), utilizing the Clenshaw-Curtis abscissas (right).

Preliminary Results

Some preliminary results are listed below for the one-dimensional stochastic peri-
dynamics problem (8), i.e.
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δ2

∫ x+δ

x−δ

u(x,w) − u(x′, w)

|x − x′|
dx′ = b(x, ω), x ∈ (0, 1)

u(x,w) = g(x, ω), x ∈ [−δ, 0] ∪ [1, 1 + δ].
(8)

where,b(x, ω) = b(x) +
M
∑

n=1

Cn(x) exp(Yn(ω)), Yn(w) are iid∼ N(0, 1), b(x) =

1, g(x, ω) = x(1 − x), Cn(x) = 1/100, δ = 3h, h = 1/8.
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Figure 3:L2 relative error of mean vs. the number of points for realization for M = 4 (left) andL2 relative error of
variance vs. the number of points for realization forM = 4 (right).

Future Works

• Implementation for deterministic/stochastic problems in2 dimensions.

•Complete, rigorous analyses of errors and convergence rates and of adaptive
grid refinement strategies for deterministic problems.
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