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Quantifying uncertainty of reactive transport simulations in 

groundwater can be conducted by using multiple conceptual 

models because groundwater flow and reactive processes are 

complex and subject to multiple interpretations. 

Consideration of alternative models results in broader but more 

realistic estimates of predictive uncertainty because the 

alternatives capture different plausible conceptual uncertainties. 

When quantifying predictive uncertainty it is important to realize 

the existence of model structural error besides measurement 

error because any alternative conceptual model is a 

simplification of reality. 

Model structural error is likely to present a high degree of 

temporal correlation for breakthrough data collected sequentially 

along time. 

It has been long recognized that the error correlation may affect 

parameter estimation and predictive uncertainty quantification. 

Methods for accurately describing the correlation structure of the 

errors and to incorporate it into groundwater reactive transport 

modeling is an open question. 

In conventional groundwater modeling, the errors are assumed 

to be multivariate Gaussian with zero mean and independent 

with a diagonal covariance matrix by considering only variances 

of measurement errors.  

This assumption has been found invalid in reactive transport 

modeling, and may lead to significant underestimation of 

predictive uncertainty.  

This is particularly true in multimodel analysis when alternative 

reactive transport models are considered. Use of a diagonal 

covariance matrix of the measurement errors in the calibration 

can cause one model to have an overwhelmingly high model 

probability (even 100%), which cannot be justified by the 

available data and knowledge. 

In this study, we developed a statistical method to identify the 

temporal correlation structure using time series theories. 

The method considers both measurement errors and model 

structural errors. Unlike the measurement errors, the model 

structural errors present a high degree of temporal correlation. 

Therefore, unlike the conventional assumption, the correlation 

structure of the total errors is characterized by a full covariance 

matrix instead of the diagonal one. 

The full covariance matrix is obtained by simulating the 

correlated errors with autoregressive models and is incorporated 

into groundwater modeling by an iterative method with two 

stages of parameter estimation.  

We applied this method to a set of synthetic and real-world 

surface complexation models developed to simulate uranium 

transport based on a series of column experiments.  
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One popular method of multimodel analysis is 

model averaging. An averaged prediction is a 

weighted average of predictions produced by 

individual models Mk.  
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Predictive uncertainty is measured by a linear 

confidence interval,                , where sy is 

standard deviation of the prediction.     
1 /2

ˆ
yy t s 

The variance of averaged prediction is:     
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where Z is sensitivity matrix of predictions to 

model parameters, X is sensitivity matrix of 

observations to parameters; Ce is covariance 

matrix of error.  

The averaging weight is usually estimated 

based on model selection criteria (IC).  
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The commonly used model selection criteria are 

AIC, AICc, BIC and KIC. They have a common 

term called negative log likelihood function (NLL)  
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Assume sum of model structural error and 

measurement error, ek, follow multivariate 

Gaussian distribution with covariance matrix, then      
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In practice, the error correlation is generally 

disregarded and the diagonal covariance matrix 

of measurement error is usually used to evaluate 

the NLL in model selection criteria. 

The miscalculation in NLL misrepresents the 

information content of data, and may lead to 

incorrect estimation of model selection criteria, 

model averaging weights and averaged 

predictive performance. 

To correct the miscalculation it is necessary to 

reflect error correlation in model calibration. 

The full covariance matrix is obtained by 

simulating the correlated errors with 

autoregressive time series models (AR(p)) and is 

incorporated into groundwater modeling by an 

iterative method with two stages of parameter 

estimation. 

• Kohler et al. (1996) 

developed seven SCMs to 

simulate uranium transport 

based on eight column 

experiments data. 

• This study considers four 

SCMs; 

• True model consider 

reactions highlighted by red; 

• Models are calibrated by 

Expt.1, 2, 8 with 120 data 

generated by true model. 

• Predict Expt. 3 

Surface Complexation Models (SCMs) 

  
Case I 

Disregarding error correlation 

Case II 

Considering error correlation 

  C3 C4 C5 C6 C3 C4 C5 C6 

wAICc (%) 0.0 0.0 100.0 0.0 0.0 0.0 72.4 27.6 

wKIC (%) 0.0 0.0 100.0 0.0 0.0 0.0 71.5 28.5 

Two calibration cases:  

Case I: Disregard error correlation; measurement error 

with standard deviation around 10-3; 

Case II: Considering error correlation. 

Averaging Weight and Predictive Performance  
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•Uncertainty bounds of 

single models become 

larger due to consideration 

of error correlation. 

•Uncertainty bounds of 

model averaging become 

even larger due to 

consideration of model 

uncertainty. 

•Blue: Mean and 95% 

linear confidence intervals 

(CI) of single models 

•Red: Mean and 95% CI of 

model averaging 

•Uncertainty bounds are 

extremely narrow due to 

the small uncertainty of 

measurement errors. 

•Predictive performance of 

model averaging is the 

same with C5. 

Coverage 

(%) 
C3 C4 C5 C6 MLBMA 

Case I 0.0 6.7 25.0 15.0 25.0 

Case II 3.3 38.3 43.3 43.3 100.0 

Case I 

Case II 

Disregarding error correlation, model uncertainty 

is underestimated, and predictive uncertainty 

bound is narrow hardly covering the true values. 

Considering error correlation, model averaging 

weights become more realistically and evenly 

distributed among the models and give better 

averaged predictive performance. 

ITERATED TWO-STAGE  

PARAMETER ESTIMATION 

THEORETICAL BACKGROUND INTRODUCTION REACTIVE TRANSPORT MODELING 

CONCLUSIONS 

where Cek
 is a full covariance matrix, because 

model structural error is likely to show a high 

degree of temporal correlation for measurement 

data collected sequentially along time. 

where Var(ŷ) is predictive variance of individual 

model calculated by 

For a alternative model f(βk) with model structure 

error ηk, a value of measurement data, D, 

collected sequentially along time with 

measurement error ε is expressed by 
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