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Introduction GPU Matrix Ordering — Increase Memory Loads

Radial Basis Functions (RBFs) provide a powerful and elegant solution to calculate weights for
generalized Finite Differences on arbitrary node distributions. Weights apply to stencils of
scattered nodes (e.g., Figure 1) and result in a derivative approximation at the stencil center.
High-order accuracy is easily achieved by increasing the number of nodes per stencil.
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This effort extends previous work on a multi-CPU/GPU implementation of RBF-FD originally . R » Improve memory access for certain
dedicated to explicit solutions of hyperbolic PDEs [1]. The addition of a GPU-based implicit | e sparse storage formats

solver for elliptic PDEs completes the necessary building blocks required for large-scale GPU .
solution of geophysical flows based entirely on the RBF-FD method.
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» Stencils reordered internally on each GPU:
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» R t this n % t e T 2l i crane] \ > Keep O and R contiguous for fast transfer between
epeat this n X n system solve for a stencils. A CPU and CPU

» ¢ is Gaussian RBF centered at xx, k =1, ..., n

» L is some differential operator (i.e., %, ai, Ve etc.); form multiple RHS system for efficiency

Governing Equation

Steady-state viscous Stokes flow on the surface of a sphere: Manufacture Divergence-Free Fields

V - [n(Vu+ (Vu)")] + RaTF = Vp |
V- u=0 > For any function g(x), u = Q«Pxg(x) » Spherical Harmonics (Y/”) test case:

where Q, is the curl projection: 5 5 20
Assume constant 7 (i.e., V7 = 0) to simplify test problem: " 0 - g(x) = 81/3 — 3Y10 + Yoo
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Simplifications for Development
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(a) Solution Qy(g(x)) with g(x) = 8Y2—3YE + Y2 (b) Manufactured RHS
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> Diagonal block RBF-FD weight operator (i.e., RHS of Eq. 1)
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, Implicit Solutions with Preconditioned GMRES
AS_Z{(ZL—F)w—F o1 (3)
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where r is the Euclidean distance between stencil nodes and independent of coordinate system. Algorithm 1 : Left-preconditioned GMRES(k)  » Sparse Matrix-Vector Multiply (SpMV) is true
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5. 90> 7. must be constrained to the sphere via projection: 1: while convergence == false do bottleneck in GMRES
X1 X2 X3

. 2: = M1(b- Ax) > MPI_Alltoallv

8 = ol > MPI Allreduce - /
Vi = I’o/ﬁ I |
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> Off-diagonal block operators: 5:  forj=1to k do ]
6: 7
-
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Px =1 — XX

O - 10 wj = M~ 1Ay, > MPI_Alltoallv
- ; — / —UBLAS_CSR_CPU Multiply test

Py— = (XlX Xk — lek)__ X=X; for /i =1tojdo —VCL_COO_GPU Multiply test
axl r (3’r hij =< wj,v; > > MPI_Allreduce — VCL_CSR_GPU Multiply test

a 1 a 9 W, = wj — hi,jVi I ——VCL_ELL_GPU Multiply test
an_ — (X2X Xk — X2,k)_a_ X=X; 10: end for
52 rer g hiv1 = ||wl|2 > MPI_Allreduce N o

. T ; Vier = Wi/ hji1 -

PX8_><3 = (x3X " X) — X3,k)75 X=X; 13- eond for -igure 6 :  The GPU accelerates the SpMV

14:  Set Vi =[wi, -+, v] and Hy = (hiy) by up to 24x over the CPU
15: Solve: min,cg«||Ber — Hiyl|2

16:  x = x0+ Vi » RBF-FD systems are slow to converge

17: if [[MY(b— Ax)|}2< ¢ th .. "
- M- X_k)||2 - > |Investigating preconditioners

18: convergence = true _

19:  end if > Accurate and convergent solutions may

» Choice of € determines 3(1) endX(:/ani:Z > MPI-Alltoallv require stable algorithm for RBF-FD weight
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