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Abstract

For classical obstacle problem, the obstacle function ψ should be a smooth function, however, we considered the
nonlocal obstacle problem which can allow ψ to be a function with jump discontinuities. The Laplacian operator in
classical obstacle problem is replaced by the nonlocal operator, for which the fractional Laplacian is a special case.
We considered the problem of minimizing an energy functional with the constraint u ≥ ψ, where u is the solution
of the problem. In a proper space, we proved the existence and uniqueness of the solution. A finite element method
is applied to solve the minimization problem. The convergence of the numerical solution to the exact solution was
proved. Also, we gave some numerical results to verify our theorems.

Introduction
In general, the obstacle function ψ should be a smooth (at least continuous) function, and the solution
u is continuous and possesses Lipschitz continuous first derivatives. However, what if ψ is discontin-
uous? Obviously, it is difficult for the classical obstacle problem to deal with. Since the local problem
is the limit of the nonlocal problem, we can develop the nonlocal obstacle problem to overcome it. For
the nonlocal obstacle problem we can set ψ as a function with discontinuities or with less regularity.
There are two mainly cases.
We define

γ(x, y) =

{
cγ

|y−x|n+2s, |y − x| ≤ δ,

0, |y − x| > δ.

Case 1, s ∈ (0, 1), δ > 0, cγ > 0, x, y ∈ Rn.
Case 2, s ∈ [−n/2, 0), δ > 0, cγ > 0, x, y ∈ Rn.
For both cases, in proper spaces, we need to find u ≥ ψ, such that

I [u] = min
v≥ψ

I [v], (1)

where I [v] := 1
2

∫
Ω

∫
Ω γ(x, y)(v(x)− v(y))2 dydx−

∫
Ω vf dx.

Case 1: Existence and Uniqueness
Let ΩI ⊂ Rn be a bounded open domain with piecewise smooth boundary. The boundary domain is:
ΩB := {y ∈ Rn \ ΩI such that γ(x, y) 6= 0 for x ∈ ΩI}, and let Ω = ΩI ∪ ΩB.
We define the semi-norm of u and the associated spaces as:

|||u||| :=
(∫

Ω

∫
Ω
γ(x, y)(u(x)− u(y))2dydx

)1/2

V sc (Ω) := {u ∈ L2(Ω) : |||u||| <∞ and u(x) = 0, x ∈ ΩB},
V sc,0(Ω) is the closure of C∞0 (ΩI) in V sc (Ω).

Let ψ ∈ V sc (Ω), we define A := {u ∈ V sc,0(Ω) : u ≥ ψ}.
Lemma 1.A is closed and convex.

Our goal is to seek u ∈ A such that (1) is satisfied.
Lemma 2. I [·] is weakly lower semicontinuous on V sc,0(Ω), which is I [v] ≤ lim inf

k→∞
I [vk] whenever

vk ⇀ v, weakly in V sc,0(Ω).

Lemma 3. Suppose v, ψ ∈ V sc , v ≥ ψ and lim
n→∞

ψn → ψ strongly in V sc , lim
n→∞

vn → v strongly in
V sc , then we have lim

n→∞
max(vn, ψn)→ v strongly in V sc .

Then we define

a(u, v) =

∫
Ω

∫
Ω
γ(x, y)(u(x)− u(y))(v(x)− v(y))dxdy,

(f, v) =

∫
Ω
fvdx.

Theorem 1. u ∈ A solves (1) if and only if it solves

a(u, v − u) ≥ (f, v − u), ∀v ∈ A. (2)

Theorem 2. The solution of (2) exists and is unique.

Case 1: Approximation
Suppose that we are given a parameter h converging to 0, and a family {Vh}h of closed subspaces of
V sc,0. Also, there is a family {Ah}h of closed convex nonempty subsets of V sc,0 with Ah ⊂ Vh, such
that {Ah}h satisfies the following two conditions:

(i), If vh ∈ Ah, and {vh}h is bounded in V sc,0, then the weak cluster points of {vh}h belong to A.

(ii), There exists χ ⊂ V sc,0, χ̄ = A and rh : χ→ Ah such that lim
h→0

rhv = v strongly in V sc,0, ∀v ∈ χ.

The problem (2) is approximated by

a(uh, vh − uh) ≥ (f, vh − uh), ∀vh ∈ Ah, uh ∈ Ah. (3)

Theorem 3. (3) has a unique solution. With the above assumptions on A and {Ah}h, we have

lim
h→0
|||uh − u||| = 0,

with uh the solution of (3) and u the solution of (2).

We define D := {v|ΩI
∈ C∞0 (ΩI), and v|ΩB

= 0}.
Theorem 4. Let ψ ∈ V sc (Ω), if there exist functions {ψn}n ∈ V sc and ψn|ΩI

∈ C(ΩI), also, ψn ≤ 0 in
a neighborhood of ∂ΩI , and ψn ≥ ψ, ψn→ ψ, n→∞, strongly in V sc , then we have D ∩ A = A.

From now on, we restrict ourselves to continuous piecewise linear finite element approximations. We
define the regular triangulation of ΩI as Th. Σh := {p ∈ Ω̄I , p is a vertex of T ∈ Th}. The space V sc,0
is approximated by the family of subspaces {Vh}h, where

Vh := {vh ∈ C0(Ω), vh|ΩB
= 0 and vh|T ∈ P1,∀T ∈ Th}.

Thus we can get the basis functions {φp}, such that vh =
∑
vh(p)φp.

Case 1: Assumptions and Examples of ψ
Assumption 1. ψ satisfies the conditions in Theorem 4.

Assumption 2. lim
h→0

ψh = ψ strongly in L2(Ω), where ψh(p) = ψ(p), ψh ∈ C0(Ω), and ψh|T ∈ P1.

Then we approximate A by Ah = {vh ∈ Vh, vh(p) ≥ ψh(p),∀p ∈ Σh}.

Example 1. In 1-D, we define ΩI = (a, b), and set the sub-intervals:
I1 = (a, a1), I2 = [a1, a2), · · · , Im = [am−1, b), where m is a finite number.
ψ ∈ {ψ| ψ|Īi ∈ C

1(Īi), i = 1, · · · ,m} and ψ ≤ 0 in a neighborhood of ∂ΩI .

Example 2. In 2-D, suppose there are two circles in ΩI dividing it into three parts. Ω1, Ω2 are in the
circles, and d(Ω1,Ω2) > 0, we have ψ = 1,∀x ∈ Ω1 ∪ Ω2, and ψ = 0 elsewhere.

Example 3. ψ ∈ {ψ| ψ|ΩI
∈ H1

0(ΩI) ∩ C0
0(ΩI), ψ|ΩB

= 0}.

Remark 1. For 0 < s < 1
2, Example 1 and 2 satisfy the two assumptions of ψ. For 0 < s < 1,

Example 3 satisfies the two assumptions of ψ.

Conclusions
• For Case 1, if ψ satisfies the two assumptions, with the definition of Ah, then {Ah}h satisfies

conditions (i) and (ii), so that we have Theorem 3.

• For Case 2, we define Vc(Ω) := {u : ‖u‖ < ∞ and u(x) = 0, x ∈ ΩB}, where ‖ · ‖ is the L2(Ω)
norm, then let ψ ∈ Vc(Ω) as Example 1-3.
We define A := {u ∈ Vc(Ω) : u ≥ ψ}.
Theorem 5. The solution u ∈ A of (1) exists and is unique.

Then we approximate A by Ah = {vh ∈ Vh, vh(p) ≥ ψh(p),∀p ∈ Σh}.
The problem (1) is approximated by

a(uh, vh − uh) ≥ (f, vh − uh), ∀vh ∈ Ah, uh ∈ Ah. (4)

Theorem 6. (4) has a unique solution. With the above assumptions on A and {Ah}h, we have

lim
h→0
‖uh − u‖ = 0,

with uh the solution of (4) and u the solution of (1).

Numerical Results in 1-D
a). Here let s = −0.05, h = 1/257, cγ = 2−2s

δ2−2s , f = 0, and ψ be the discontinuous obstacle as

ψ =

 2− 8x if 1
8 < x ≤ 1

4;

8x− 6 if 3
4 < x ≤ 7

8;
0 elsewhere.

Figure 1: From left to right: δ = 0.1 (nonlocal) and δ = 0.05 (nonlocal), δ = 0.001 (nonlocal), local.

b). Here let s = −0.45, δ = 0.1, cγ = 2−2s
δ2−2s , f = 0, and ψ be the discontinuous obstacle as

ψ =

{
1 if 1

4 < x ≤ 3
4;

0 elsewhere.

Figure 2: From left to right: h = 1/65 (nonlocal), h = 1/129 (nonlocal), h = 1/257 (nonlocal), and h = 1/257 (local).

c). Here let s = 1/4, δ = 2, cγ = 2−2s
δ2−2s , f = 0, and ψ is the same as the one in a).

Figure 3: From left to right: h = 1/257 (nonlocal), and h = 1/257 (local).
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