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We pose a version of the time-dependent incompressible Navier-Stokes equations with a stochastic forcing term. The finite element method is used to
discretize the variational form of the problem. The stochastic forcing term is represented by a covariance function whose eigenvalues are employed in a truncated
Karhunen-Loeve expansion. Finite element computations are applied to problems with both Gaussian and exponential covariance functions, and the appropriate rate

Introduction

Formally, the stochastic incompressible Navier Stokes equations with Newtonian constitutive relationship
may be written as:

u —vAu+ (u-Vijiu+ Vp=f£f(t,z,w) in (0,T) x D x §,
V-u=0 in (0,7) xD x Q,
u=g(t,x) on (0,7) x 9D,

u = ug(z) on D x {0}.

A colored noise function f(¢, x, w) in space has an associated semidefinite covariance function C'(x, y). Thus,
the relationship between two values of the forcing term can be measured by

<f(t,z,w), f(s,y,w) >=d6(t — s)C(x,y)

whe d(t) is the usual Dirac delta function.

The corresponding stochastic variational formulation:

/DE[atU°V]d£IZ—|—V/DE[VUIVV]dI—i—/DE[(U_°V)U°V]d.T—/ZDE[pV°V:dCC
_/DE[f.vjdx
/DE[w-u]da;:o

where v € S and ¢ € Q).
S={veH} V- ¢(,w) =0, Pa.e.l}.
Q={pe L) / p(-w)dz = 0, pra.e.)
D

Hy = [H{)? equipped with [[v]l5. . p) = El[v]l g p))'/>

Monte Carlo Galerkin Finte Element Method

In this section we discribe the use of the standard Monte Carlo Galerkin finite element method to construct
approximatations of each realization.

Given a number of realizations, M, and the finite element space Sy, @), on D. For each j=1,2,.... M, sample
independent and identically distribution of the external random force f(t,-,w;) based on realization of KL
expansion. and find a corresponding approximation uy(t, -, w;) € Sp, gy (t, -, w) € Qp,.

[

- vdx + /D(u(-,wj) -V)u(-,wj) - vdx + V/D Vu(-,wj) : Vvdr—
/Dp(-,w)v vdQ = /Df(-,wj) vdz
/D oV -u(-,wj)dr =0

where v(t,-,w;) € Sy, ¢(t, -, wj) € Qp as-P.

By the Karhuen-Loeve Representation theorem, The colored noised right hand side f(x, -, w) : D x Q) — R
with mean p ¢(x) and covariance kernal C'(x1, x2) can be represented as

f<377 g w) — ,LL(£C> T Z \/262(33)‘52(“}) n L2<Q)_a°€°
1=1

where ; are centered mutually uncorrelated random variables with unit variance, {\;, e; } are the eigenvalues
and orthonormal eigenfunctions of the Fredhelm integration equation of second kind

/D Clz,y)ej(y)dy = Njej(x),j =1,2,..., (1)

with gy > pg > -+ 2 0.

Time discretization

Applying the backward Fuler method, This leads to fully implicit method for seeking uj, in n + 1-st time
layer:

1 +1 +1 +1 +1(,,0) -
57 i) vada [ () V) ) vada v | Vgt w) s Vda-

1
n+1 n+1 n
p wi)V - v dx—/f Wi) -V d:c+—/u - vydx,
/D WV D wp) vade + p "N
Y,V - uzﬂ(wj)dx = 0.

The resulting nonlinear algebraic system is then solved by the Newton Method. In the inner iterations the
umifpack solver are employed to solve the linear system.

Guassian Colored Noise Stimulation

2 ‘x_y‘Z

Crlz,y) =0%e Lo x,y€D

After orthogonalizing e; with same eigenvalues (eg.Gram Schmidt) and normalizing eigenvectors e; with

numerical integration scheme Zi\il wpe;(z;)e;(x;), we can find a orthonormal basis {e; } with quadrature
weights {w; } which is good numerical approximation of e; of (1).
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(b) Guass-Legendre quadrature rule

(a) Piecewise Middle points rule

Figure 1: the first few eigenvalues with different different quadrature points

1)
Examples
we consider the following two-dimensional stochastic Navier Stokes driven by color noise.

u —vAu+ (u-Viu+ Vp = f(x,t) + &(z,t,w) in (0,T) x D x €,
V-u=0 in (0,7) xD x Q,
u=g on (0,7) x 9D x (2,

u=ug onD x {0} x Q.

Where §(x,t,w) denotes the color noise with mean zeros and gaussian variance function C'¢(x,y) =

ey
ole” I rx,yeD o=1and v =1, L.= 10, and

—t

g(t,z) = (e ! cos(2my) sin(2rx), —e ¢ cos(2mz) sin(2my))

Flz,t) =2z + me ! sin(drz) — e cos(2my) sin(2rx) + 872ve ! cos(2my) sin(2mx),
2y + me L sin(dmy) 4+ et cos(2mx) sin(2my) — 8mPve ! cos(2mx) sin(2my))
ug = (cos(2my) sin(27x), cos(2mx) sin(2my))
h | Ju(T) —up(T)||| order [|[u(T) —wp(T)||| order [[|p(T) — py(T)||| order
1/2 | 2.524270e-02 - 2.524270e-02 - 1.263379¢e-+00 -

1/4 | 1.069344e-02 1.239141| 1.068352e-02 |1.240480| 7.144075e-01 | 0.822468
1/8 | 1.337853e-03 12.998734| 1.336509e-03 2.998846| 3.077256e-01 |1.215103
1/16] 1.656229e-04 3.013946| 1.651406e-04 3.016702| 9.342183e-02 |1.719813
1/32]  2.081968e-05 2.991882| 2.076527e-05 2.991451 | 2.723982e-02 | 1.778043
1/64) 2.609404e-06 2.996156 | 2.591168e-06 3.002498| 6.451420e-03 |2.078028
Table 1: the computational results for 100 simulations
1—‘411.5 4 3.5 3 E)Zgl(5h) 2 1.5 1 0.5
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