
A GPU-Accelerated Hydrodynamics Solver
For Atmosphere-Fire Interactions

Abstract

Jhamieka Greenwood jsg15h@my.fsu.edu
Advisors: Dr. Bryan Quaife and Dr. Kevin Speer
Department of Scientific Computing
Geophysical Fluid Dynamics Institute

A fundamental process to understand fire spread is the atmospheric flow. Building computational tools to
simulate this complex flow has several challenges including boundary layer effects, resolving vegetation
and the forest canopies, conserving fluid mass, and incorporating fire-induced flows. We develop a two-
dimensional hydrodynamic solver that models fire-induced flow as a convective sink that converts the
two-dimensional horizontal flow into a vertical flow through the buoyant plume. The resulting equations
are the two-dimensional Navier-Stokes equations, but with point source delta functions appearing in the
conservation of mass equation. We develop a projection method to solve these equations and implement
them on a GPU architecture. The ultimate goal is to simulate wildfire spread faster than real-time, and
with the ability for users to introduce real-time updates in an augmented reality sandbox.

Methods
By studying scaled-down models for fire dynamics, we are investigating fundamental processes that are
critical to fire spread. One of the most important factors is the complex coupling of the atmospheric flow
and the combusting environment. In particular, what variables influence fire induced flows, and how do
they contribute to fire spread? On the technology side, we are developing physics-based hydrodynamic
models with a high degree of data parallelism that is ideal for graphical processing units (GPUs). The
dynamics are visualized using OpenGL in an augmented reality environment.

Our hydrodynamic solver is based on the modifications of the Navier Stokes equations

∇ ȉ 𝒖 = ൜
−1, 𝒙 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑡𝑒 𝒙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
= −𝛿 𝒙 − 𝒙 (1)

డ𝒖

డ௧
= − 𝒖 ȉ ∇ 𝒖 −

ଵ

ఘ
∇𝑝 + 𝜈∇ଶ𝒖 +

ଵ

ఘ
𝒇 (2)

As an extension of the GPU-accelerated hydrodynamic solver of Stam [1], my preliminary work solves
equation (1) using operator splitting and pressure projection. The projection step takes a velocity field w
and finds the closet velocity field that satisfies the mass equation in equation (1).

Following the classical projection operator, the modification that we devised is

𝑃𝒘 = 𝒘 − ∇𝑞

∇ଶ𝑞 = ∇ ȉ 𝒘

𝑤ℎ𝑒𝑟𝑒 ∇𝑞 = ∇ ȉ 𝒘 + 𝛿(𝒙 − 𝒙)

Implementation

Methods (cont.)

Results

Future Work

References & Acknowledgements

GPGPU Programming
CUDA (Compute Unified Device Architecture) is a parallel
computing technology developed by Nvidia for graphic processing.
CUDA programming environment allow the development of
general-purpose GPU programs for the implementation of numerical
calculations on GPUs.

Heterogeneous Programming
CUDA programming model that consist of CUDA threads
executing on a physically separate device (GPU) and operating as a
coprocessor to the host (CPU) running the C++ program.

Sinks and
vector field
figures with
descriptions.

Interactivity will be incorporated with a
5×4 foot sand table filled with reflective
sand. A projector displays output visuals
from the connected computer onto the
sand, and a Kinect camera determines the
topography. The simulation will be
coupled with a topographical model to
visualize point-source spot fires
spreading across a terrain and adding
various variables. Hand gestures/motions
will manipulate the simulation and the
terrain can be altered in real-time by
moving the structure of the sand

[1]. Jos Stam. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, pages 121–128, 1999.

Acknowledgements:
Florida State University, Department of Scientific Computing
Dr. Bryan Quaife, Dr. Kevin Speer

addForce ()

diffuseProject ()

updateVelocity ()

advectVelocity ()

addSink ()

advectParticles ()

𝒘ଵ 𝒙 = 𝒘 𝒙 + ∆𝑡𝒇(𝒙, 𝑡)

Takes in an allocated device field and applies a force through
user manipulation from the mouse. f is the force calculated
from the motion coordinates of the mouse position multiplied

by force scale factor, ∆𝑡, and force fall function (
ଵ

ଵା௫రା௬ర).

𝒘ଶ 𝒙 = 𝒘ଵ 𝒑(𝒙, −∆𝑡)

Takes in the device field from the addForce() routine
and applies a semi-lagrangian method by performing
a bilinear interpolation of the particle location (x,y)
tracked backwards in time. The new velocity is the
velocity the particle had −∆𝑡 ago at the old location.
The velocity field is now separated into two fields
vxfield and vyfield for the next routine.

𝒑𝒂𝒓𝒕 𝑡 + 1 = 𝒑𝒂𝒓𝒕 𝑡 + 𝑑𝑡 ∗ 𝒘ହ(𝒑𝒂𝒓𝒕 𝑡)

The final routine takes the device field as a parameter and updates the particles
by moving positions according to the velocity field and time. Then each particle
is mapped to a texture object and bound for visualization.

𝒘ହ 𝒙 = 𝒘ସ 𝒙 −
ଵ

ଶగ
(

(𝒙ି𝒙బ)

𝒙ି𝒙బ
మା ఌమ)

Convective sinks are added to the velocity field.
Regularization is used to smooth out the singularity
at 𝑥.

The newly projected fields are
normalized and combined back to
the device field.

The velocity fields, vxfield and vyfield, will be used in the
diffuseProject() for operations on the real components of
vxfield and vyfield (each having their own x and y
components for FFT). Modifications from the previous
slide are applied at the projection step. Inverse Fourier
transform applied to the new fields.

Figure 4. The photo to the left
illustrates the augmented reality
sand table running the fluid
simulation. The dark regions are
vortices in the flow.

Figure 3. The photo to
the right illustrates a
topographical
simulation projected
onto reflective sand.

Figure 2. Heterogenous Programming Scheme

