Professor of Department of Mathematics, University of Houston
"A trace finite element method for PDEs posed on surfaces"
1 PM, Wednesday, 499 DSL
Abstract:
Partial differential equations posed on surfaces arise in mathematical models for many natural phenomena: diffusion along grain boundaries, lipid interactions in biomembranes, pattern formation, and transport of surfactants on multiphase flow interfaces to mention a few. Numerical methods for solving PDEs posed on manifolds recently received considerable attention. In this talk we focus on an Eulerian finite element method for the discretization of elliptic and parabolic partial differential equations on surfaces which may evolve in time. The method uses traces of volume finite element space functions on a surface to discretize equations posed on the surface. The approach is particularly suitable for problems in which the surface is given implicitly by a level set function, may undergo topological changes in the course of evolution, and in which there is a coupling with a problem in a fixed outer domain. The talk explains the approach, reviews analysis and demonstrates results of numerical experiments. The problems addressed include diffusion along time-dependent surfaces and fluid systems on manifolds.