Dept. of Mathematics,
Lehman College, CUNY

"Detecting and Correcting Bias in Phylogenetic Tree Inference"

Mar 17, 2021 Schedule:

Virtual Tea Time
03:00 to 03:30 PM Eastern Time (US and Canada)

Virtual Colloquium
03:30 to 04:30 PM Eastern Time (US and Canada)

Abstract:

Phylogenetic tree inference is the problem of reconstructing a phylogenetic tree, which represents the evolutionary history of a set of organisms, from some genetic data, like DNA. Tree inference methods, like maximum likelihood and Bayesian MCMC, are known to exhibit bias, meaning they can produce trees with a tendency towards certain shapes or edge lengths. We propose a comprehensive method for detecting bias in tree shape and/or edge lengths using the Billera-Holmes-Vogtmann (BHV) tree space framework. The BHV tree space is a non-positively curved (or CAT(0)) geometric space containing all possible trees for a given set of leaves. Our method employs a logarithm map to the tangent space, yielding a Euclidean space in which to perform analysis. We show that different tree inference methods have different biases and suggest methods for correcting them.

Dept. of Scientific Computing
Florida State University
400 Dirac Science Library
Tallahassee, FL 32306-4120
Phone: (850) 644-1010
admin@sc.fsu.edu
© Scientific Computing, Florida State University
Scientific Computing